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Learning in Games

How do people get to play equilibrium?
Main question of interest in ‘learning in games’ (̸= games with learning)

Goals
Provide foundations for existing equilibrium concepts.
Capture lab behaviour.
Predict adjustment dynamics transitioning to new equilibrium.
(akin to ‘impulse response’ in macro; uncommon but definitely worth
investigating)

Select equilibria.
Algorithm to solve for equilibria.
Explain persistence of heuristics/nonequilibrium behaviour.
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Sophisticated Learning

What if players are Bayesian wrt gameplay and engage in sophisticated learning?

Two papers:
Kalai and Lehrer (1993 Ecta) “Rational Learning Leads to Nash Equilibria”
Kalai and Lehrer (1993 Ecta) “Subjective Equilibrium in Repeated Games”

(Will favour Fudenberg and Levine’s “sophisticated learning” terminology.)
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Stage Game and Repeated Interaction

Players i ∈ I = {1, . . . , n}; actions Ai (finite). Profile A = ×iAi.

Payoffs ui : A → R. One-period outcome at = (ati )i ∈ A.

Repeated game: infinite horizon, perfect monitoring, discounts δi ∈ (0, 1).

Histories ht = (a0, . . . , at–1) ∈ Ht := At; H = ∪t≥0Ht; ∅ at t = 0.

Behavioural strategies σi = (σi,t)t≥0, with σi,t : Ht → ∆(Ai).

Strategy profile σ = (σi)i. Outcome law µ
σ on Ω := AN (product σ-algebra).

History concatenation: hh′ ∈ Ht+r : h ∈ Ht, h′ ∈ Hr .

Continuation histories starting from ht: C(ht) := {h′ ∈ H∞ | (hth′) ∈ H∞}.

Filtration (Ft), Ft := σ({ht}).

Normalised expected discounted payoff:

Ui(σ) = (1 – δi)Eµσ

[∑
t≥0

δ
t
i ui(a

t)
]
.
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Beliefs, Absolute Continuity, and Payoffs

Player i’s conjectures/degenerate beliefs about opponents’ strategies σ
i
–i.

Induces belief µi = µ
σ
i
–i on Ω.

Player i’s prior νi on opponents’ strategies σ–i (Actual uncertainty).
Induces belief µi on Ω via σ̃–i 7→ µ

(σi ,σ̃–i).

For νi, expected conjecture: σ
i
–i(h)(a–i) = Eσ̃–i∼νi [σ̃–i(h)(a–i)].

Player i’s Subjective joint strategy: σ
i = (σi,σi

–i).

Truth-compatibility (absolute continuity): µ
σ ≪ µi for all i.

(i.e., µ
σ(E) > 0 =⇒ µi(E) > 0 for any µi-measurable E.)

Posteriors: after ht, update µi(· | ht) by Bayes (well-defined by abs. cont.).

Rationality path: each period t, σi,t is a best response to µi(· | ht).

Induced strategy: for histories h, h′ ∈ H, denote σh(h
′) := σ(hh′) (strategy following h for

h′).
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Closeness and “Plays ε-Like”

Definition (ε-close measures)

For ε > 0, µ is ε-close to µ̃ if ∃Q with µ(Q), µ̃(Q) ≥ 1 – ε s.t. ∀ measurable A ⊆ Q,

(1 – ε)µ̃(A) ≤ µ(A) ≤ (1 + ε)µ̃(A).

Definition (plays ε-like)

A profile σ plays ε-like σ
′ if µ

σ is ε-close to µ
σ
′
; equivalently, after any ht, the conditional

laws are ε-close on a large-probability subset.

Controls conditional probabilities on tails; prevents cumulative small-error blowup
across time.
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Learning to Predict Future Play

Theorem 1 (Learning to predict)

Fix actual strategy σ and player i’s subjective joint strategy σ
i := (σi,σi

–i). If µ
σ ≪ µ

σ
i
,

then for every ε > 0 and for µ
σ-a.e. path h ∈ H∞, ∃T s.t. ∀t ≥ T, continuation σht plays

ε-like σ
i
ht
.

Posterior forecasts of future play (conditional on realised history) merge with truth.

No optimality required here; this is a property of Bayesian updating under abs. cont.
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Merging via Likelihood Ratios

Theorem 3 (Blackwell and Dubins, 1962)

If µ ≪ µ̃, then with µ-probability 1, for every ε > 0 there exists random time τ(ε) such
that for all t ≥ τ(ε) the posteriors µ(· | Ft) and µ̃(· | Ft) are ε-close.

If people start off with compatible priors, posteriors become arbitrarily close after
exposed to enough information.

Proof Idea

Radon-Nikodym derivative φ = dµ

dµ̃
exists; set Mt = Eµ̃[φ | Ft].

(Mt) is a nonnegative µ̃-martingale; Mt → M∞ a.s.

Control likelihood ratios on Q with µ(Q), µ̃(Q) ≈ 1.

Translate bounds to conditionals on continuation historiesC(ht); conclude ε-closeness.

Gonçalves (UCL) Sophisticated Learning 7



Merging via Likelihood Ratios

Theorem 3 (Blackwell and Dubins, 1962)

If µ ≪ µ̃, then with µ-probability 1, for every ε > 0 there exists random time τ(ε) such
that for all t ≥ τ(ε) the posteriors µ(· | Ft) and µ̃(· | Ft) are ε-close.

If people start off with compatible priors, posteriors become arbitrarily close after
exposed to enough information.

Proof Idea

Radon-Nikodym derivative φ = dµ

dµ̃
exists; set Mt = Eµ̃[φ | Ft].

(Mt) is a nonnegative µ̃-martingale; Mt → M∞ a.s.

Control likelihood ratios on Q with µ(Q), µ̃(Q) ≈ 1.

Translate bounds to conditionals on continuation historiesC(ht); conclude ε-closeness.

Gonçalves (UCL) Sophisticated Learning 7



Merging via Likelihood Ratios

Theorem 3 (Blackwell and Dubins, 1962)

If µ ≪ µ̃, then with µ-probability 1, for every ε > 0 there exists random time τ(ε) such
that for all t ≥ τ(ε) the posteriors µ(· | Ft) and µ̃(· | Ft) are ε-close.

If people start off with compatible priors, posteriors become arbitrarily close after
exposed to enough information.

Proof Idea

Radon-Nikodym derivative φ = dµ

dµ̃
exists; set Mt = Eµ̃[φ | Ft].

(Mt) is a nonnegative µ̃-martingale; Mt → M∞ a.s.

Control likelihood ratios on Q with µ(Q), µ̃(Q) ≈ 1.

Translate bounds to conditionals on continuation historiesC(ht); conclude ε-closeness.

Gonçalves (UCL) Sophisticated Learning 7



Overview

1. Learning in Games

2. Sophisticated Learning

3. Merging of Opinions

4. Subjective Equilibrium and Main Theorem

5. Assumptions, Variants

6. Critiques



Subjective ε-Equilibrium

Definition (Subjective ε-equilibrium)

A profile σ = (σi)i is a subjective ε-equilibrium if there exist beliefs σ
i = (σi,σi

–i) with:

σi is a best response to σ
i
–i, for every i;

σ plays ε-like σ
i, for every i.

Corollary 1

If each σi best responds to σ
i
–i and σ ≪ σ

i for all i, then for a.e. path h ∃T s.t. ∀t ≥ T,
the continuation σht is a subjective ε-equilibrium.

Proof Idea

Fix ε > 0; for µ
σ-a.e. h ∃T s.t. ∀t ≥ T, σht plays ε-like σ

i
ht

for each i (Theorem 1).

By rationality, at every t player i plays a best response to µi(· | ht).

Merging =⇒ those best responses are ε-best responses to true continuation µ
σ(· | ht).

Both (supporting beliefs & closeness) =⇒ subjective ε-equilibrium from time T.
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From Subjective to (Approximate) Nash

Proposition 1

For every ε > 0, ∃η > 0 : if σ is a subjective η-equilibrium then ∃σ
∗ s.t.

(i) σ plays ε-like σ
∗;

(ii) σ
∗ is an ε-Nash equilibrium of the repeated game.

Idea: under perfect monitoring and known own payoffs, adjust off-path prescriptions to
align incentives while preserving realisations up to ε.

Proof Idea

Fix η > 0 small. Given subjective η-equilibrium σ, modify off-path prescriptions s.t.
unilateral deviations trigger responses that keep the deviator’s continuation payoff
within ε of best-reply payoff.

Perfect monitoring =⇒ changes leave realisations ε-close.

Resulting σ
∗ is an ε-best reply for each player: σ

∗ is an ε-Nash equilibrium; and σ plays
ε-like σ

∗.
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Main Theorem: Rational Learning =⇒ Nash Play

Theorem 2 (Kalai and Lehrer 1993)

Suppose each σi best responds to σ
i
–i and µ

σ ≪ µ
σ
i
for all i. Then for every ε > 0 and

for µ
σ-a.e. path h, ∃T s.t. ∀t ≥ T there is an ε-Nash equilibrium σ

ε of the repeated game
with σht playing ε-like σ

ε.

Proof Idea

1) Theorem 1 =⇒ eventually correct forecasts (merging).

2) Best responses to beliefs =⇒ ε-best responses to truth (large t).

3) Proposition 1 =⇒ approximate Nash play along the realised path.
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Absolute Continuity and Bayesian Nash Equilibrium

Bayesian Nash equilibrium (BNE): in incomplete information (finite type space), each
σi maximises expected utility given beliefs over types and strategies.

At a BNE of the repeated game, priors give a grain of truth: realised play has positive
probability under beliefs =⇒ absolute continuity holds.

Application: starting from a BNE, players eventually play (approximately) a Nash
equilibrium of the realised complete-information repeated game.
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Meaning and Interpretation

What converges? Not actions each period, but forecasts of future play; behaviour is
best response to (nearly) correct forecasts.

Why it matters: ensures long-run play consistent with Nash discipline without common
knowledge of rationality or equilibrium selection.

Learning vs commitment: players learn the environment they face (others’ strategies),
not a fixed state of nature.

Role of absolute continuity: bans dogmatic zero-probability beliefs about realised
events; makes Bayes informative.

Learning: with merging, each player’s beliefs about future play match the truth;
subjective ε-equilibrium obtains on-path.

Gonçalves (UCL) Sophisticated Learning 12



Incomplete Information on Payoffs

Bayesian Nash starting point

In a repeated game with finitely many payoff types, if play starts at a Bayesian Nash
equilibrium, then eventually players play (approximately) a Nash equilibrium of the re-
alised complete-information repeated game.

Grain of truth at BNE =⇒ abs. cont.; merging =⇒ correct forecasts; best responses
=⇒ near-NE of realised environment.
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Fudenberg and Levine (1998; 2009 ARE)

Endogeneity of absolute continuity: abs. cont. must hold for the realised path under
the true play; ensuring this is itself an equilibrium-like fixed-point problem.

Grain of truth: wanting priors that always put positive mass on the truth is impossible
in rich (uncountable) environments; workable classes may be very restrictive.

Interpretation caution: Kalai and Lehrer (1993 Ecta) shows a consistency result
conditional on abs. cont.; not a general path-to-equilibrium selection theory.

Comparative statics: results sensitive to prior support assumptions; small changes
can break abs. cont. and merging conclusion.

Bottom line: powerful when abs. cont. holds (e.g., BNE start with finite types), but
limited as a general behavioural foundation without specifying priors.

“Our interest here, however, is in “learning models,” by which we mean that the allowed
priors are exogenously specified, without reference to a fixed point problem.”
Fudenberg and Levine (1998)
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Takeaways

Under absolute continuity, Bayesian learning merges beliefs with the truth along
realised play.

Rational (best-reply) control with merged beliefs =⇒ eventual (approximate) Nash
play.

At BNE with finite types, eventual play tracks an NE of the realised
complete-information game.

Abs. cont. is strong and endogenous; use with care as general foundation for learning
in games.
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